Product Description

Product Description

6800 series deep groove ball bearings

 other series: product-list-1.html

Bearing NO (mm)Boundary Dimensions (Kn) (Kn) (r/min)
Limit Rotational Speed
(Kg)
Weight
d D B Dynamic Load Rating
Cr
Static Load Rating
Cor
Grease Lubrication Oil Lubrication
6800 10 19 5 1.72 0.84 34000 40000 0.0053
6801 12 21 5 1.92 1.04 32000 38000 0.0068
6802 15 24 5 2.07 1.26 28000 34000 0.0075
6803 17 26 5 2.63 1.57 26000 30000 0.0083
6804 20 32 7 4.0 2.47 22000 26000 0.02
6805 25 37 7 4.5 3.15 18000 22000 0.571
6806 30 42 7 4.7 3.65 15000 18000 0.026
6807 35 47 7 4.9 4.1 14000 16000 0.571
6808 40 52 7 6.35 5.5 12000 14000 0.033
6809 45 58 7 6.6 6.15 11000 13000 0.041
6810 50 65 7 6.4 6.2 9500 11000 0.054
6811 55 72 9 8.8 8.5 8500 10000 0.081
6812 60 78 10 11.5 10.9 8000 9500 0.101
6813 65 85 10 11.9 12.1 7500 8500 0.12
6814 70 90 10 12.1 12.7 6700 8000 0.13
6815 75 95 10 12.5 13.9 6300 7500 0.14
6816 80 100 13 12.7 14.5 6000 7100 0.15
6817 85 110 13 18.7 20 5600 6700 0.27
6818 90 115 13 19.0 21 5300 6300 0.28
6819 95 120 13 19.3 22 5000 6000 0.29
6820 100 125 13 19.6 23 4800 5600 0.31
Note:Above-mentioned products include its modification series,such as Z,2Z,RS,and 2RS etc.

 

Detailed Photos

 


Black chamfer with rubber seal

Black chamfer with white dust cover

open UG

white chamfer with yellow dust cover

ceramic ball bearing

THE USE OF THE BEARING
Some tips on use
Rolling bearing is a precise part. Therefore it should be used carefully. No matter how high performance the bearing has, it can be obtained by improper use, the followings are the points for attention to use bearings.
(1) Keep clean the bearing and its surrounding areas
It is harmful to the bearing even by tiny dust which can not be seen by human eyes. Therefore it should always keep clean the surrounding environments in order to prevent the bearing from dust corrosion.
(2) Use bearing carefully
Scar and indentation can essily be produced out of strong impact to the bearing in use and become the cause of accidents. Therefore special caution should be given to its use.
(3) Use the appropriate operating tool
Avoid using a hammer or heavy direct tap on a bearing or sleeve, must use appropriate tools such as press or heating.
(4) Be careful to the rust corrosion of the bearings
The sweat in the hands will cause rust in operating the bearings. Therefore your hands should be cleanly washed and dried before operation. You’d better wear gloves in doing the work. 
(5) Handler should familiar with bearing
(6) Establish bearing handling criteri
·Bearing storage
.Bearing and surrounding cleaning
.Dimension of mounting parts and inspection
.Machining quality
.Mounting handing
.After mounting inspection
·Disassembly handing
·Keep maintain
·Adding lubricant

 

Installation Instructions

 Bearing mounting
 Precautions for proper mounting of bearing
1) Bearing preparation
Bearing should not be unpacked until before mounting due to spray anti-corrosion oil and pack anti-corrosion paper. In addition, spray anti-corrosion oil on bearing have good lubricate function. For general purpose, just directly using bearing fill-in grease bearings, without cleaning. However, bearing for instrument or high speed rotating must be cleaned with clean filtered oil in order to remove the anti-corrosion oil. At that time, the bearings are easy to corrosion could not storage long term.
2) Inspection of shafts and housings
Cleaning shaft and housing, confirming no scratched or machine burrs, no CZPT and cutting piece in housing. Secondly comppare with drawing, the shaft and housing of dimension, form and machining quality should be inspected.
chart 1 Measure location for shaft diameter                                                                         chart 2  Measure location for housing bore diameter                       

As chart 1 and chart 2 showing, divided several locations to be measure on shaft and housing bore diameters, It should be careful inspected perpendicular between shaft, housing fillet dimension and shoulder.
Before mounting bearing, it should be sprayed mechanical oil on fitting surface after check out the shaft and housing.

Bearing storage
Before leaving the factory, the bearing is sprayed proper rust-inhibiting oil and packed rust-inhibiting paper. The quality of bearing is guaranteed, if the packing is not broken.
For long-term storage, if the humidity less than 65% and the temperature about 20, it should storage on shelf which is higher 30cm than ground.
In addition, storage occasion should avoid sunshine and contact with cold wall.

Pictures about packaging

 

Company Profile

Our Advantages

1. World-Class Bearing: We provide our customers with all types of indigenous bearing with world-class quality.
2. OEM or Non-Stand Bearings: Any requirement for Nonstandard bearings is Easily Fulfilled by us due to its vast knowledge and links in the industry.
3. Genuine products With Excellent Quality: The company has always proved the 100% quality products it provides with genuine intent.
4. After Sales Service and Technical Assistance: The company provides after-sales service and technical assistance as per the customer’s requirements and needs.
5. Quick Delivery: The company provides just-in-time delivery with its streamlined supply chain. 
SAMPLES
1. Samples quantity: 1-10 PCS are available. 
2. Free samples: It depends on the Model No., material and quantity. Some of the bearings samples need client to
    pay samples charge and shipping cost. 
3. It’s better to start your order with Trade Assurance to get full protection for your samples order. 

CUSTOMIZED
The customized LOGO or drawing is acceptable for us. 

MOQ
1. MOQ: 10 PCS standard bearings. 
2. MOQ: 1000 PCS customized your brand bearings. 

OEM POLICY
1. We can printing your brand (logo, artwork)on the shield or laser engraving your brand on the shield. 
2. We can custom your packaging according to your design
3. All copyright own by clients and we promised don’t disclose any info.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Motor Parts: Motor Bearing
Water Pump Parts: Water Pump Bearing
Air Compressor Parts: Air Compressor Bearing
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

black or white or as required
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

deep groove ball bearing

Can you provide examples of scenarios where high-speed rotation benefits from deep groove ball bearings?

High-speed rotation often benefits from the use of deep groove ball bearings due to their specific design features and capabilities. Here are examples of scenarios where deep groove ball bearings are advantageous for high-speed rotation:

  • Electric Motors:
  • Deep groove ball bearings are commonly used in electric motors that require high-speed rotation, such as those found in industrial machinery, automotive applications, and household appliances. The low friction and smooth operation of deep groove ball bearings allow electric motors to achieve efficient and reliable performance at high rotational speeds.

  • Machine Tools:
  • In machine tools, such as milling machines and lathes, high-speed rotation is often necessary to achieve precise cutting and shaping operations. Deep groove ball bearings enable smooth and precise rotational motion, ensuring the accuracy and efficiency of machining processes at high speeds.

  • Spindles:
  • Spindles in various applications, including woodworking machines, CNC routers, and grinding machines, require high-speed rotation for precision operations. Deep groove ball bearings with their ability to handle both radial and axial loads and their low friction characteristics provide the necessary support and stability for high-speed spindle rotation.

  • Turbomachinery:
  • In turbomachinery applications such as turbochargers, centrifugal compressors, and gas turbines, high-speed rotation is essential for efficient energy conversion and power generation. Deep groove ball bearings, with their ability to accommodate high speeds and handle radial loads, are used to support the rotating components of such turbomachinery, ensuring reliable and continuous operation.

  • Automotive Wheels:
  • Deep groove ball bearings are commonly used in automotive wheels, where high-speed rotation is required. They support the radial and axial loads encountered during vehicle operation and allow smooth rotation at highway speeds. Deep groove ball bearings contribute to the overall performance, safety, and durability of automotive wheels.

  • High-Speed Fans and Blowers:
  • In applications such as industrial fans, HVAC systems, and turbo blowers, high-speed rotation is necessary to generate the desired airflow or pressure. Deep groove ball bearings are employed to support the fan or blower rotor, enabling smooth and efficient rotation at elevated speeds while minimizing energy losses.

  • Rotating Machinery in Aerospace:
  • In aerospace applications, various rotating components, including jet engines, helicopter rotors, and satellite mechanisms, require high-speed rotation. Deep groove ball bearings, designed to withstand high speeds and provide reliable performance, are used in these aerospace systems to ensure smooth operation and support critical functions.

In summary, deep groove ball bearings are beneficial for high-speed rotation in a wide range of scenarios. They find application in electric motors, machine tools, spindles, turbomachinery, automotive wheels, high-speed fans and blowers, as well as rotating machinery in the aerospace industry. The low friction, smooth operation, and ability to handle radial and axial loads make deep groove ball bearings suitable for supporting high-speed rotation while ensuring performance, precision, and reliability.

deep groove ball bearing

Can you explain the design principles of deep groove ball bearings and their functions?

Deep groove ball bearings are designed based on specific principles to ensure their optimal performance and functionality. Here’s a detailed explanation of the design principles of deep groove ball bearings and their functions:

  • Internal Geometry:
  • The internal geometry of deep groove ball bearings is characterized by the presence of deep raceway grooves in both the inner and outer rings. These grooves enable the bearings to accommodate radial loads, axial loads, or a combination of both. The geometry of the raceway grooves is designed to distribute the load evenly along the rolling elements, minimizing stress concentrations and maximizing load-carrying capacity.

  • Rolling Elements:
  • Deep groove ball bearings utilize steel balls as rolling elements. The balls are typically made of high-quality bearing steel and are precision-ground to ensure smooth and consistent rolling. The number, size, and arrangement of the balls in the bearing determine its load-carrying capacity and rotational characteristics. The rolling elements reduce friction and enable the efficient transfer of loads, allowing the bearing to operate with minimal energy losses.

  • Cage:
  • A cage, also known as a retainer, is used in deep groove ball bearings to separate and guide the rolling elements. The cage holds the balls in position, ensuring proper spacing and alignment, and preventing contact between them. The main function of the cage is to maintain ball separation, reduce friction, and enable smooth rotation. Common cage materials include steel, brass, or synthetic polymers.

  • Sealing and Shielding:
  • Deep groove ball bearings may incorporate sealing or shielding mechanisms to protect the internal components from contaminants and retain lubrication. Seals are designed to provide a barrier against dust, dirt, and moisture, while shields offer protection from larger particles. These protective features help extend the bearing’s service life, improve reliability, and maintain proper lubrication conditions.

  • Lubrication:
  • Lubrication is essential for the smooth operation and longevity of deep groove ball bearings. Proper lubrication reduces friction, heat generation, and wear of the bearing components. The choice of lubricant and the method of lubrication depend on the application requirements and operating conditions. Common lubrication methods include grease packing, oil bath, oil mist, or centralized lubrication systems. Adequate lubrication ensures optimal performance, reduces maintenance needs, and extends the bearing’s lifespan.

  • Mounting and Fitting:
  • Deep groove ball bearings are designed for easy mounting and fitting onto shafts or in housings. They typically have standardized dimensions and tolerances to facilitate interchangeability. Proper mounting techniques, such as using the correct fitting tools and applying appropriate axial and radial clearance, are crucial for achieving optimal bearing performance, reducing stress, and preventing premature failure.

In summary, the design principles of deep groove ball bearings encompass internal geometry with deep raceway grooves, rolling elements in the form of steel balls, cages for ball separation, sealing or shielding mechanisms for protection, lubrication systems for friction reduction, and easy mounting and fitting. These design elements work together to ensure the smooth operation, load-carrying capacity, durability, and reliability of deep groove ball bearings.

deep groove ball bearing

Can you provide insights into recent advancements in deep groove ball bearing technology?

Recent years have seen several advancements in deep groove ball bearing technology, driven by the constant pursuit of improved performance, durability, and efficiency. These advancements have been made possible through innovations in materials, manufacturing processes, and design techniques. Here are some insights into the recent advancements in deep groove ball bearing technology:

  • Advanced Materials:
  • New materials and alloys have been developed to enhance the performance of deep groove ball bearings. For example, the use of high-performance steels and ceramics has gained popularity. These materials offer enhanced strength, corrosion resistance, and high-temperature capabilities, allowing deep groove ball bearings to operate in demanding environments with improved reliability and longevity.

  • Surface Engineering and Coatings:
  • Advancements in surface engineering and coatings have contributed to the performance of deep groove ball bearings. Innovative coating technologies such as diamond-like carbon (DLC) coatings and various nano-coatings can reduce friction, improve wear resistance, and enhance the overall efficiency of bearings. These coatings also provide protection against contaminants and extend the bearing’s operating life.

  • Improved Manufacturing Processes:
  • Manufacturing techniques have been refined to achieve higher precision and quality in deep groove ball bearings. Advanced machining processes, such as precision grinding and superfinishing, enable tighter tolerances and smoother surface finishes. This results in improved bearing performance, reduced noise levels, and enhanced operational efficiency.

  • Design Optimization:
  • Design optimization has played a significant role in recent advancements in deep groove ball bearing technology. Computer-aided design (CAD) and finite element analysis (FEA) tools have enabled engineers to optimize bearing geometries, load distribution, and cage designs. These advancements have led to improved load-carrying capacity, reduced friction, and enhanced overall performance of deep groove ball bearings.

  • Sealing and Lubrication:
  • Advancements in sealing and lubrication technologies have improved the reliability and maintenance requirements of deep groove ball bearings. Effective sealing mechanisms, such as contact seals or non-contact seals, provide better protection against contamination and moisture ingress, extending the bearing’s service life. Additionally, advancements in lubrication techniques, such as the use of advanced greases and solid lubricants, enhance the bearing’s efficiency and reduce friction.

  • Sensor Integration:
  • Integration of sensors within deep groove ball bearings has emerged as a recent advancement. These sensors can monitor various parameters, such as temperature, vibration, and load, providing real-time data on bearing health and performance. This enables proactive maintenance and condition monitoring, allowing for timely interventions and preventing potential failures.

In summary, recent advancements in deep groove ball bearing technology have focused on the development of advanced materials, surface engineering and coatings, improved manufacturing processes, design optimization, sealing and lubrication techniques, as well as sensor integration. These advancements have resulted in deep groove ball bearings with enhanced performance, durability, and efficiency. As a result, industries across various sectors can benefit from these advancements, experiencing improved reliability, reduced maintenance, and optimized operational performance.

China manufacturer 6802 2RS Thin Wall Shielded 15*24*5mm ABEC3 Deep Groove Ball Bearing   ball bearingChina manufacturer 6802 2RS Thin Wall Shielded 15*24*5mm ABEC3 Deep Groove Ball Bearing   ball bearing
editor by CX 2024-04-12