Product Description

Product Description

Deep groove ball bearings (GB/T 276 -2003) , formerly known as single row radial ball bearings, are 1 of the most widely used rolling bearings. The utility model is characterized in that the friction resistance is small, the rotating speed is high, and the utility model can be used for the machine parts which bear the radial load or the combined load of the radial and the axial simultaneous action, and also can be used for the machine parts which bear the axial load, for example, low-power motors, automobile and tractor gearboxes, machine tool gearboxes, general machinery, tools and so on.

Model d (mm) D (mm) H (mm) W (kg)
6008 40 68 15 0.185
6009 45 75 16 0.231
6571 50 80 16 0.25
6011 55 90 18 0.362
6012 60 95 18 0.385
6013 65 100 18 0.408
6014 70 110 20 0.62
6015 75 115 20 0.63
6016 80 125 22 0.86
6017 85 130 22 0.94
6018 90 140 24 1.38
6019 95 145 24 1.5
6571 100 150 24 1.63
6571 110 170 28 2.35
6206 30 62 16 0.21
6207 35 72 17 0.288
6208 40 80 18 0.368
6209 45 85 19 0.416
6210 50 90 20 0.463
6211 55 100 21 0.603
6212 60 110 22 0.789
6213 65 120 23 0.99
6214 70 125 24 1.084
6215 75 130 25 1.171
6216 80 140 26 1.448
6217 85 150 28 1.803
6218 90 160 30 2.71
6219 95 170 32 2.62
6220 100 180 34 3.19
6305 25 62 17 0.232
6306 30 72 19 0.346
6307 35 80 21 0.457
6308 40 90 23 0.639
6309 45 100 25 0.837
6310 50 110 27 1.082
6311 55 120 29 1.367
6312 60 130 31 1.71
6313 65 40 33 2.1
6314 70 150 35 2.55
6315 75 160 37 3.05
6316 80 170 39 3.61
6317 85 180 41 4.284
6318 90 190 43 4.97
6319 95 200 45 5.74
6320 100 215 47 7.09
6403 17 62 17 0.27
6404 20 72 19 0.4
6405 25 80 21 0.53
6406 30 90 23 0.735
6407 35 100 25 0.952
6408 40 110 27 1.221
6409 45 120 29 1.52
6410 50 130 31 1.855
6411 55 140 33 2.316
6412 60 150 35 2.811
6413 65 160 37 3.342
6414 70 180 42 4.896
6415 75 190 45 5.739
6416 80 200 48 6.752
6417 85 210 52 7.933
6418 90 225 54 9.56

    ZheJiang Haina Bearing Co., Ltd. is an integrated company of industry and trade. Since its establishment, it has been committed to the research and development, production, and sales of high-end 7 types of tapered roller bearings, British non-standard bearings, deep groove ball bearings, and outer spherical bearings. We can customize and adjust various types of bearings according to customer needs. The products are widely applicablein fields such as automobiles, mines, chemicals, metallurgy, reducers, engineering machinery, agricultural machinery, and electric motors.

    Our company has advanced testing equipment, forming a production model of product serialization and mass production. We have a group of experienced and skilled management personnel, who have introduced advanced production equipment and measuringand testing equipment. From the purchase of bearing raw materials to the delivery of finished products, we strictly control the entire process, ensuring the quality of the products.The products have the characteristics of precision, low noise, high load-bearing capacity and long service life.

Product Application

1. Your factory how to control the quality?
A: All bearing parts before the production and the production process, strict inspection by 100%, including crack detection, roundness, hardness,
roughness,and the geometry size, all bearing meet ISO international standard.

2. Can you tell me the bearing material?
A: We have chrome steel GCR15, stainless steel, ceramics and other materials.

3. How long is your delivery time?
A: If the goods are in stock, usually 5 to 10 days, if the goods are no stock for 15 to 20 days, according to the quantity to determine the time.

4. OEM and custom you can receive?
A: Yes, accept OEM, can also be customized according to samples or drawings for you.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Model No.: 6206 6207 6208 6209 6210
OEM: Acceptable
Quality: P0 P2 P4 P5 P6
Number of Row: Single Rows
Single Row ID Size Range: 30~50mm
Single Row Od Size Range: 62~90mm
Samples:
US$ 0.5/Piece
1 Piece(Min.Order)

|
Request Sample

deep groove ball bearing

What are the challenges and solutions for managing radial loads and axial loads in deep groove ball bearings?

Managing both radial loads and axial loads in deep groove ball bearings can present certain challenges. However, there are solutions available to address these challenges effectively. Here’s a detailed explanation of the challenges and solutions for managing radial loads and axial loads in deep groove ball bearings:

  • Challenges:
  • Deep groove ball bearings are primarily designed to handle radial loads. When subjected to significant axial loads, they may experience increased stress and premature wear, potentially leading to bearing failure. The challenges in managing radial loads and axial loads include:

    • Increased contact pressure and localized stress on the raceways due to axial loads
    • Potential ball skidding or sliding under high axial loads, leading to uneven wear
    • Risk of ball and raceway deformation or brinelling under excessive axial loads
  • Solutions:
  • To effectively manage radial loads and axial loads in deep groove ball bearings, the following solutions can be implemented:

    • Proper Bearing Selection: Selecting deep groove ball bearings that are designed to handle both radial and axial loads is crucial. Bearings with higher axial load capacities, such as deep groove ball bearings with filling slots or angular contact ball bearings, may be suitable for applications with significant axial loads.
    • Optimized Internal Clearance: The internal clearance of the bearing can be adjusted to accommodate the expected radial and axial loads. This ensures optimal load distribution and minimizes the risk of excessive stress concentrations. Manufacturers provide guidelines on the appropriate internal clearance for different load conditions.
    • Bearing Preload: Preloading the bearings can help manage axial loads by applying a controlled amount of internal axial force. This ensures that the bearings maintain contact with the raceways and minimizes the risk of ball skidding or sliding. Preloading is commonly used in applications such as machine tools.
    • Use of Thrust Bearings: In applications with high axial loads, incorporating thrust bearings in conjunction with deep groove ball bearings can help manage the axial component effectively. Thrust bearings are designed specifically to handle axial loads and can be used in combination with deep groove ball bearings to support both radial and axial loads.
    • Design Considerations: Careful consideration of the application’s operating conditions, load magnitudes, and directions is essential. This includes analyzing the ratio of radial to axial loads, the presence of shock or impact loads, and any misalignment or angular loads that may affect bearing performance. By understanding the specific requirements, the bearing arrangement and selection can be optimized for improved load management.

In summary, managing radial loads and axial loads in deep groove ball bearings requires careful consideration and appropriate solutions. Proper bearing selection, optimized internal clearance, bearing preload, the use of thrust bearings, and design considerations tailored to the application’s requirements are key steps in effectively managing both radial and axial loads. By implementing these solutions, the performance and longevity of deep groove ball bearings can be maximized, ensuring reliable operation under varying load conditions.

deep groove ball bearing

What factors should be considered when selecting a deep groove ball bearing for a specific application?

When selecting a deep groove ball bearing for a specific application, several factors need to be considered to ensure optimal performance and reliability. Here’s a detailed explanation of the factors that should be taken into account:

  • Load Requirements:
  • One of the primary considerations is the type and magnitude of the loads the bearing will be subjected to. Determine whether the application requires primarily radial loads, axial loads, or a combination of both. Consider the load capacity, both dynamic and static, of the bearing to ensure it can handle the expected loads without premature failure.

  • Speed and Rotational Requirements:
  • Consider the rotational speed requirements of the application. Deep groove ball bearings are suitable for high-speed applications, but factors such as bearing design, lubrication, and cage material can impact their maximum allowable speed. Determine the required speed and ensure the selected bearing is capable of operating within the desired rotational limits.

  • Size and Dimensions:
  • Consider the space limitations and the available shaft and housing dimensions. Select a deep groove ball bearing with the appropriate bore diameter, outside diameter, and width that can be accommodated within the given space. Ensure that the bearing’s dimensions meet the requirements of the specific application.

  • Operating Conditions:
  • Evaluate the operating conditions, including temperature, humidity, contamination levels, and presence of corrosive or abrasive substances. Choose a bearing with suitable sealing or shielding options to protect against environmental factors. Consider the temperature range and select a bearing with appropriate heat resistance and lubrication compatibility for reliable performance under the anticipated conditions.

  • Precision and Tolerance:
  • Determine the required level of precision and tolerance for the application. Deep groove ball bearings are available in various precision classes, ranging from general-purpose bearings to high-precision bearings for demanding applications. Consider the required dimensional accuracy, running accuracy, and stability to ensure the bearing meets the performance expectations.

  • Lubrication and Maintenance:
  • Consider the lubrication requirements and maintenance capabilities of the application. Different operating conditions may require specific lubrication methods such as grease or oil, and the bearing should be suitable for the chosen lubricant. Evaluate the maintenance requirements and select a bearing that aligns with the maintenance practices and resources available.

  • Cost and Availability:
  • Factor in the cost and availability of the deep groove ball bearing. Consider the budget constraints while ensuring the selected bearing meets the performance requirements. Check the availability of the bearing from reputable suppliers to ensure timely replacements or spares if needed.

In summary, when selecting a deep groove ball bearing for a specific application, it is crucial to consider factors such as load requirements, speed and rotational requirements, size and dimensions, operating conditions, precision and tolerance, lubrication and maintenance, as well as cost and availability. Evaluating these factors will help ensure the chosen bearing is suitable for the application and will deliver reliable performance and longevity.

deep groove ball bearing

How do temperature variations and environmental conditions impact the performance of deep groove ball bearings?

Temperature variations and environmental conditions can have a significant impact on the performance of deep groove ball bearings. These factors can affect the bearing’s lubrication, material properties, dimensional stability, and overall operating characteristics. Here’s a detailed explanation of how temperature variations and environmental conditions impact the performance of deep groove ball bearings:

  • Lubrication:
  • Temperature variations can influence the viscosity and lubricating properties of the bearing grease or oil. High temperatures can cause lubricants to thin out, reducing their ability to form a protective film between the rolling elements and raceways. This can lead to increased friction, wear, and heat generation, potentially resulting in premature bearing failure. Conversely, extremely low temperatures can cause lubricants to thicken, impeding their flow and impairing the bearing’s ability to maintain proper lubrication. It is crucial to select lubricants suitable for the expected temperature range to ensure optimal lubrication and minimize the negative effects of temperature variations on bearing performance.

  • Material Properties:
  • Temperature variations can affect the material properties of the bearing components. High temperatures can cause thermal expansion, leading to dimensional changes in the bearing’s inner and outer rings, as well as the rolling elements. This can result in increased radial internal clearance and potential misalignment, affecting the bearing’s running accuracy and performance. Additionally, high temperatures can accelerate the aging or degradation of bearing materials, reducing their strength and fatigue resistance. Extreme cold temperatures, on the other hand, can make materials more brittle, increasing the risk of fracture or damage under load. It is important to consider the expected temperature range and select bearing materials that can withstand the anticipated thermal conditions to ensure reliable and long-lasting performance.

  • Dimensional Stability:
  • Temperature variations can impact the dimensional stability of deep groove ball bearings. As temperatures change, the bearing components can expand or contract, affecting the internal clearance and fit of the bearing. This can lead to changes in running accuracy, noise levels, and the ability to maintain proper alignment within the application. In applications where precise positioning or running accuracy is critical, temperature variations must be taken into account to ensure the bearing maintains the required dimensional stability and performance under varying thermal conditions.

  • Operating Characteristics:
  • Temperature variations can affect the overall operating characteristics of deep groove ball bearings. High temperatures can increase the operating noise and vibration levels of the bearing, potentially impacting the comfort and performance of the machinery or equipment in which the bearing is installed. Temperature-induced expansion or contraction can also affect the bearing’s ability to handle axial or radial loads, potentially altering the load distribution and causing uneven wear or excessive loading on certain areas of the bearing. Understanding the operating characteristics of the bearing in relation to temperature variations is crucial for selecting the appropriate bearing type and size for the specific application.

  • Environmental Effects:
  • Environmental conditions, such as dust, moisture, chemicals, or corrosive substances, can also impact the performance of deep groove ball bearings. Dust and dirt particles can infiltrate the bearing, leading to increased friction, wear, and potential damage to the rolling elements and raceways. Moisture or corrosive substances can cause rust or corrosion, compromising the bearing’s structural integrity and lubrication properties. It is important to consider the environmental conditions in which the bearing will operate and select appropriate sealing solutions or protective coatings to mitigate the effects of contaminants or corrosive elements.

In summary, temperature variations and environmental conditions can significantly impact the performance of deep groove ball bearings. By understanding the effects of temperature on lubrication, material properties, dimensional stability, and operating characteristics, appropriate measures can be taken to ensure optimal bearing performance and longevity. Considering the expected temperature range, selecting suitable materials, providing proper lubrication, addressing dimensional changes, and protecting against environmental factors are all important considerations when using deep groove ball bearings in different operating conditions.

China manufacturer Deep Groove Ball Bearing 6201 6202 6203 6204 6205 Zz 2RS C3 Bearing for Auto Parts Agricultural Machinery   ball bearingChina manufacturer Deep Groove Ball Bearing 6201 6202 6203 6204 6205 Zz 2RS C3 Bearing for Auto Parts Agricultural Machinery   ball bearing
editor by CX 2024-02-28